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Abstract
We introduce Energy Reactive Modules Games
(ERMGs), an extension of Reactive Modules
Games (RMGs) in which actions incur an energy
cost (which may be positive or negative), and the
choices that players make are restricted by the en-
ergy available to them. In ERMGs, each action is
associated with an energy level update, which de-
termines how their energy level is affected by the
performance of the action. In addition, agents are
provided with an initial energy allowance. This al-
lowance plays a crucial role in shaping an agent’s
behaviour, as it must be taken into consideration
when one is determining their strategy: agents may
only perform actions if they have the requisite en-
ergy. We begin by studying rational verification for
ERMGs and then introduce Endogenous ERMGs,
where agents can choose to transfer their energy to
other agents. This exchange may enable equilibria
that are impossible to achieve without such trans-
fers. We study the decision problem of whether a
stable outcome exists under both the Nash equilib-
rium and Core solution concepts.

1 Introduction
The paradigm of rational verification is an important ap-
proach to verifying the possible behaviours of multi-agent
systems [Gutierrez et al., 2017; Abate et al., 2021; Gutierrez
et al., 2023b]. Rational verification draws inspiration from
the well-known formal verification paradigm of model check-
ing, which is concerned with automatically checking whether
or not a given system satisfies certain properties, expressed as
formulae of temporal logic [Baier and Katoen, 2008]. Ratio-
nal verification differs from model checking in that it assumes
that system components (agents) are rational actors, making
choices in pursuit of their personal goals, and taking into
account the strategic behaviours of other agents – goals are
typically captured by associating with each agent a temporal
logic formula that it desires to see satisfied. Since agents are
assumed to be rational, game theory provides a natural frame-
work through which to understand collective rational action:
a classic decision problem in RV involves asking whether a

given temporal logic property holds on some run of the sys-
tem that arises by agents choosing strategies that constitute
(for example) a Nash equilibrium [Abate et al., 2021].

Many variations of rational verification have now been
studied [Gutierrez et al., 2018; Gutierrez et al., 2023b;
Bruyère et al., 2022; Brice et al., 2023]. In this work, we
introduce a variation of the problem in which agents act un-
der energy resource bounds. Specifically, we assume agents
are given some initial energy endowment, and subsequently,
all actions that the agent performs are assumed to affect this
endowment. Actions may generate energy (leading to an in-
crease in the endowment) or consume energy (reducing the
endowment). Crucially, agents can only perform actions for
which they have sufficient energy. Note that energy plays a
secondary role in agents’ preferences: agents are concerned
with achieving their goal, and energy affects preferences only
indirectly (by affecting the actions they can perform).

To capture this setting, we introduce a variation of Reac-
tive Modules Games (RMGs) [Gutierrez et al., 2017]. In our
new variation, individual agent actions (specified via guarded
commands) are associated with an energy value, which may
either increase or decrease the agent’s energy endowment.
We begin our study by showing that this framework, while
providing a very natural platform through which to model
resource-bounded multi-agent systems, can in fact be re-
duced to “classic” RMGs, and as a consequence, the key
non-cooperative and cooperative decision problems in ratio-
nal verification for our new setting are no harder than in the
“classic” setting.

We then study an extension of our model called Endoge-
nous ERMGs, in which agents may transfer energy to other
agents. Such offers change the possible actions that agents
may perform, and hence may change the underlying strategic
structure of the game: for example, it may make sense for me
to “donate” energy to another agent so that it will choose ac-
tions that are of benefit to me. This leads to a two-stage game,
with a pre-play “offer” phase. Such an exchange may facil-
itate equilibria that are impossible to achieve without such
an exchange. We study the decision problem of whether a
stable outcome and offer profile exists under both the Nash
equilibrium and Core solution concepts, again showing that
the complexities of the associated problems for both solution
concepts in Endogenous ERMGs are also 2EXPTIME-c.
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2 Preliminaries
We use classical propositional logic, defined over a finite and
non-empty set Φ of Boolean variables. Each variable in Φ
may take the values of truth ⊤ or falsity ⊥, which we rep-
resent with the binary values 1 and 0, respectively. Our lan-
guage includes the classical propositional logic connectives
¬ (“not”), ∨ (“or”), ∧ (“and”), → (“implies”), and ↔ (“iff”).
A valuation v⃗ ∈ {0, 1}|Φ| over Φ is a binary string repre-
senting an assignment of truth values to all variables in Φ.
We say that a valuation v⃗ satisfies a propositional formula φ
defined over Φ, written v⃗ |= φ, if φ is true under v⃗. Where
x⃗ = (x1, . . . , xn) is an n-tuple andA ⊆ {1, . . . , n}, we write
x⃗A = (xi)i∈A to denote the |A|-tuple consisting of the ele-
ments in x⃗ that are indexed by those inA. Similarly, we write
x⃗−A = (xi)i∈{1,...,n}\A to denote the tuple of elements in x⃗
which are not indexed by elements inA. Finally, where x⃗ and
y⃗ are two disjoint tuples, we write (x⃗, y⃗) for the tuple formed
by merging x⃗ and y⃗.

Linear Temporal Logic (LTL). We make extensive use
of the standard framework of Linear Temporal Logic (LTL),
which is an extension of propositional logic with tensed
modal operators for expressing properties of infinite linear
sequences of states [Pnueli, 1977]. Specifically, in addition
to the usual stock of classical connectives as above, LTL in-
cludes the unary operators “X” (next), “F” (sometime), and
“G” (always), and the binary “until” operator, “U ”. Given
a set of variables Φ, let LTL(Φ) be the set of LTL formulae
over Φ; where the variable set Φ is clear from the context, we
simply write LTL. LTL formulae are interpreted with respect
to infinite sequences of valuations, which we refer to as runs,
typically denoted ρ, ρ′, etc. Where ρ = v⃗0v⃗1v⃗2 . . . is a run,
and t ∈ N is a temporal index into ρ, we write (ρ, t) |= φ to
mean that φ ∈ LTL is true at time t ∈ N on run ρ. Addi-
tionally, we use the notation ρ[t] to denote the valuation v⃗t in
ρ at time point t ∈ N. We write ρ |= φ as a shorthand for
(ρ, 0) |= φ, in which case we say that ρ satisfies φ. The size
of an LTL formula φ, written |φ|, is given by the number of
subformulae in φ. We refer to the reader to [Emerson, 1990;
Baier and Katoen, 2008] for full details on the syntax and
semantics of LTL.

Simple Reactive Modules. We use an extension of the Sim-
ple Reactive Modules Language (SRML) [van der Hoek et
al., 2006] to model agents, which we refer to as modules. An
SRML module consists of:

1. An interface, which defines the module’s name and the
Boolean variables under the control of the module; and

2. Two sets of guarded commands, which define the
choices available to the module at every state.

Interfaces are specified by the syntax
module mi controls Φi, where mi is the name
of the module and Φi ⊆ Φ is the set of variables under its
exclusive control. Guarded commands consist of two parts:
a precondition for executing the command, known as the
guard, and the actual command, which specifies how the
value of (some of) the variables under the module’s control
are updated when the command is executed.

In the extension of SRML we work with in this paper, we
augment guarded commands with an additional energy value,
which specifies how the module i’s energy level at time t,
denoted Et

i , is changed if the command is executed. A posi-
tive energy value will increase available energy at time t+ 1;
a negative value will decrease available energy. Given this,
the general form of a guarded command in our augmented
SRML is of the form [energy] guard⇝ command where
energy is the associated energy cost/gain. More formally,
a guarded command g for a module mi controlling Boolean
variables Φi ⊆ Φ is an expression:

[e] φ⇝ x′1 :− ψ1; · · · ;x′k :− ψk,
where e ∈ Z, φ and each ψj is a propositional logic for-
mula over Φ, and every x′j represents the value of the vari-
able xj ∈ Φj after the command is executed. The value of
any variable in Φi that does not appear in a guarded com-
mand g is unchanged by the execution of g. We also require
that x′a ̸= x′b for all a ̸= b ∈ {1, . . . , k}, i.e., no variable’s
value is reassigned twice in the same guarded command. For
a guarded command g = [e]φ ⇝ x′1 :− ψ1; · · · ;x′k :− ψk,
η(g) = e represents the change in energy level associated
with g, guard(g) = φ represents the guard of g, and evl(g) =
x′1 :− ψ1; · · · ;x′k :− ψk represents the command of g. For
an agent i with energy level Ei and a valuation v⃗, we say that
a guarded command gi for i is enabled if both −Ei ≤ η(gi)
and v⃗ |= guard(gi) and we write enablei(v⃗, Ei) for the set of
all guarded commands gi which are enabled for i under v⃗.

For example, the guarded command [−2] (p ∨ q) ⇝
p′ :− ⊥; q′ :− ⊤ for a module mi can be read as “if p or
q are true and i has at least two units of energy, then one of
the actions available to mi is to set p to ⊥ and q to ⊤, which
incurs an energy cost of 2 units for mi.”

There are two kinds of guarded commands for a module:
those used to initialise the variables under the module’s con-
trol, and those used to subsequently update the variables.
These are represented as sets of guarded commands init
and update, respectively.

To ensure that agents always have a well-defined action
available, we assume that in each agent’s init set, at
least one initial guarded command has a non-negative energy
value. We also equip every module with a skip guarded
command as part of its update set, which is always avail-
able and does nothing to the variables under its control. This
can be explicitly written as [eskipi ] ⊤ ⇝ ∅, where eskipi ∈ N
(including 0) and we use ∅ to denote a command which does
nothing to the variables under the module’s control. We re-
quire that the energy cost for the skip command be non-
negative to ensure that at least one command is always avail-
able to every agent, which entails that runs are always well-
specified.

Formally, an SRML module, mi is given by a triple
mi = (Φi,initi,updatei), where:

• Φi ⊆ Φ is the set of variables controlled by mi;
• initi is a finite set of initialisation guarded commands

for mi; and
• updatei is a finite set of update guarded commands for
mi.
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An SRML arena is then simply a collection of agents, their
representative modules, and the specification of each agent’s
initial and maximum energy values:

A = (N,Φ, (mi)i∈N , (e
max
i )i∈N , (E

0
i )i∈N ),

where:
• N = {1, . . . , n} is a finite, non-empty set of agents;
• Φ =

⋃
i∈N Φi is a finite, non-empty set of propositional

variables, where the sets Φi are all pairwise disjoint;
• mi = (Φi,initi,updatei) is an SRML module over
Φ that defines the choices available to agent i ∈ N ;

• emax
i ∈ N is the maximum energy capacity of agent i 1;

and
• E0

i ∈ {0, . . . , emax
i } is the initial energy level of i.

module mi controls Φi

init[
e1i
]
⊤⇝ Φ′

i :− v1i
· · ·
[em1

i ] ⊤⇝ Φ′
i :− vm1

i
update[
em1+1
i

]
φm1+1 ⇝ Φ′

i :− vm1+1
i

· · ·[
ek1
i

]
φk1 ⇝ Φ′

i :− vk1
i

skip

Figure 1: A Reactive Module

An agent module mi for an agent i is defined by aug-
menting the set of original variables Φi under their control
with a set of command variables, which are used to identify
precisely which action the agent took at each point in time.
Given this, the agent module for i takes the following general
form as in Figure 1:

(i) for any set Ψ ⊆ Φ of Boolean variables and a Boolean
literal v ∈ {⊤,⊥}, Ψ :− v denotes the assignment where
all variables in Ψ are set to v; (ii) for any ordered set
Ψ = {p1, . . . , pm} ⊆ Φ of Boolean variables and a binary
string B = b1b2 . . . bm, Ψ′ :− B denotes the assignment
p′1 :− b1; p

′
2 :− b2; . . . ; p

′
m :− bm. Finally, for a given en-

ergy level Ei of an agent i, we let initi|E and updatei|E
denote the set of initial and update guarded commands for i
respectively whose corresponding energy values are at least
−E:

initi|E :− {g ∈ initi | η(g) ≥ −E}
updatei|E :− {g ∈ updatei | η(g) ≥ −E}.

These sets will be useful in identifying the set of guarded
commands that are available to an agent, given their current
energy level at any point in a run.

3 Energy Reactive Modules Games
With these definitions in place, we can define the model for
concurrent games that we focus on in this study. Formally, an
Energy Reactive Modules Game (ERMG) is a structure

G = (A, γ1, . . . , γn),

1We assume that each agent is equipped with a device that has a
finite capacity for storing energy.

where A is an SRML arena and γi is the LTL goal of agent
i ∈ N . At the beginning of a game, each agent i ∈ N se-
lects an initial guarded command g0i ∈ initi|E0

i
. The en-

ergy level of each agent i at timestep 1 is then updated as
E1

i = min(E0
i + η(g0i ), e

max
i ) and the initial valuation v⃗0 of

the variables in Φ is set according to the commands chosen,
i.e., evl(g0i ).

2 Then, at every step t ∈ Z+ of the execution,
each agent i selects an enabled update guarded command
gti ∈ updatei|Et

i
to execute, which updates the values of the

variables in Φi according to evl(gti) and updates the agent’s
energy level from Et

i to Et+1
i = min(Et

i + η(gti), e
max
i ).

This update gives rise to a new valuation v⃗t, and then the
next round proceeds in the same manner. This process re-
peats indefinitely, giving rise to a run, which in an ERMG is
an infinite sequence of valuations ρ = v⃗0v⃗1 . . . where for all
t ∈ N, we have that v⃗t+1 is obtained from the execution of
enabled guarded commands by all agents i ∈ N . Note that
given the restrictions on allowable actions at each time point,
each agent’s energy level will always be a non-negative inte-
ger throughout any run.

A particular class of games which can be represented
using ERMGs are regular RMGs, which are exactly the
same as ERMGs, except that no energy values are involved.
Regular RMGs can thus be specified by an arena A =
(N,Φ, (mi)i∈N ) and LTL goals (γi)i∈N . Key decision prob-
lems in rational verification under the Nash equilibrium so-
lution concept for regular RMGs have been well-studied in
prior work [Gutierrez et al., 2017].

We model strategies as deterministic Mealy machines,
which are known to be sufficient for optimality in our set-
ting [Gutierrez et al., 2017]. A strategy for a player i ∈ N
with associated module mi = (Φi,initi,updatei) is a
Mealy machine (i.e., a finite state machine with output) σi =
(Qi, q

0
i , δi, τi), where Qi is a finite set of machine states, q0i

is the initial state, and for all q ∈ Qi, v⃗ ∈ {0, 1}|Φ|, we have:
• δi : Qi × {0, 1}Φ → Qi is the strategy’s deterministic

state update function such that δi(q, v⃗) ̸= q0i , i.e., the
initial state is never revisited;

• τi(q, v⃗) ∈ enablei(v⃗, Ei) is the output function that
specifies which enabled guarded command is selected by
player iwith energy levelEi, such that τi(q, v⃗) ∈ initi

iff q = q0i , i.e., initial guarded commands are only se-
lected at the started of the game;

For each player i ∈ N , we let Σi represent their set of pos-
sible strategies and write Σ =

∏
i∈N Σi represent the set of

all strategy profiles, i.e., tuples of strategies for each player.
Since we consider deterministic strategies in this setting, a
strategy profile σ⃗ deterministically generates a run ρ(σ⃗,G) in
an ERMG G, which consists of the infinite sequence of val-
uations generated by the execution of enabled guarded com-
mands by modules at each time step.

Given this, we are now in a position to define preferences
and utility functions over runs in ERMGs. We assume that a
player i ∈ N has the sole objective of satisfying their LTL

2It is also possible to consider settings with unbounded energy
capacities, but this is not physically realistic and is likely to lead to
undecidable verification problems [Bulling and Farwer, 2010].
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s0

{}

s2 {r1, r2}s1{l1, l2}

t
{l1}, {r2}
{r1}, {l2}

{l1, r2}
{r1, l2}

−1,−1

1, 1

−1,−2

1, 2

Figure 2: The diagram for Example 1. The losses/gains of energy for
B1 and B2 are represented by edge labels. To maintain clarity, some
labels are not shown. The nodes s0, s1, s2 symbolise the positions
of both robots in M,L,R respectively. The node t is a macrostate
encompassing several states, as indicated by its labels. Each of these
(macro)states also includes a self-loop edge (not shown) correspond-
ing to the skip command.

goal γi. Given this, we say that player i ∈ N prefers the run
ρ over ρ′, written ρ ⪰i ρ

′, if and only if ρ′ |= γi implies that
ρ |= γi. This can be extended to the strict preference rela-
tion ≻i and the indifference relation ∼i in the usual manner
(see [Maschler et al., 2013]). Finally, since strategy profiles
give rise to fixed runs in an ERMG, we can write σ⃗ ⪰i σ⃗

′

as a shorthand for ρ(σ⃗,G) ⪰i ρ(σ⃗
′,G). Notice that energy

does not feature in the definition of preferences: agents are
only secondarily concerned about energy consumption, in the
sense that it places restrictions on the choices they can make.

Finally, we can define the first solution concept considered
in this study. A strategy profile σ⃗ is a Nash equilibrium (or
Nash-stable strategy profile) of an ERMG G if for all players
i ∈ N and all alternative strategies σ′

i ∈ Σi, it holds that σ⃗ ⪰i

(σ⃗−i, σ
′
i). We let NE(G) denote the set of Nash Equilibria of

an ERMG G and for an LTL formula φ, let NEφ(G) = {σ⃗ ∈
NE(G) : ρ(σ⃗,G) |= φ}.

Example 1. Consider a scenario involving two robots, B1

and B2, and three locations: middle (M), left (L), and right
(R). From each location, each robot can either stay in the
same position by choosing the skip command or move to an-
other location. From M, each robot can move to either L or R.
However, from L or R, they can only return to M. A move from
one location to another can only be initiated when both robots
are at the same location. Initially, both robots are positioned
at M. For B1, the cost of each move is −1. For B2, moving
left costs −1 but moving right costs −2. B1 (resp. B2) is
assigned to service L (resp. R) at least once. However, for
the service to be carried out, both robots must be at the same
location. After completing the service and returning to M,B1

and B2 receive an energy recharge equal to the amount they
have spent. For example, if B1 and B2 both visit R and then
return to M, B1 gains 1 unit of energy while B2 gains 2 units.
For i ∈ {1, 2}, Bi is represented by the following module.

module Bi controls {li, ri}
init
[0] ⊤⇝ l′i :− ⊥; r′i :− ⊥
update
[−1]¬(li ∨ ri ∨ l3−i ∨ r3−i)⇝ l′i :− ⊤
[−i]¬(li ∨ ri ∨ l3−i ∨ r3−i)⇝ r′i :− ⊤
[1] li ∧ l3−i ⇝ l′i :− ⊥
[i] ri ∧ r3−i ⇝ r′i :− ⊥
skip

Each robot controls two variables li and ri. If these variables
are set to true, it indicates that the robot moves to the left or
right. Let E0

Bi
= emax

B1
= 1, E0

B2
= emax

B2
= 2. Bi’s goal is

given by γBi = F si. A graphical representation of the game
is shown in Fig. 2. Consider a strategy profile which gives
rise to the initial sequence {}, {l1, l2}, {}, {r1, r2}. This is
a Nash equilibrium (NE), as the run satisfies γB1

∧ γB2
,

and the robots have enough energy to execute this strat-
egy profile. Now, consider the sequence of assignments
{}, {l1, l2}, {}, {r1}. Although the robots also have enough
energy to execute this run, it is not a NE. This is because B2

can choose to set r2 to true on the fourth round and achieve
its goal.

4 Rational Verification
Before exploring mechanisms for agents to make energy
transfers, we will briefly recapitulate the central questions of
interest in rational verification, which are concerned with ver-
ifying whether a given temporal logic property holds in some
or all rational outcomes of a multiplayer game. The crucial
assumption here is that agents are rational and self-interested;
that is, we can rule out executions of the game which are not
stable with respect to deviations by individuals or coalitions
of players.

4.1 Non-cooperative Games
The main non-cooperative rational verification problems we
will deal with are as follows:

Given: Game G, strategy profile σ⃗.
NASH-MEMBERSHIP: Is it true that σ⃗ ∈ NE(G)?
Given: Game G, LTL goal φ.
E-NASH: Is it true that NEφ(G) ̸= ∅?
A-NASH: Is it true that NEφ(G) = NE(G)?

Using a polynomial time transformation from ERMGs into
regular RMGs, we can establish that these rational verifica-
tion problems are no harder than their counterparts in regular
RMGs. Thus, we have the following results:
Proposition 1. NASH-MEMBERSHIP for ERMGs is
PSPACE-c, while E-NASH and A-NASH for ERMGs are
2EXPTIME-c.

4.2 Cooperative Games
A central assumption in non-cooperative game theory is that
agents act independently. In cooperative games, however, we
assume that agents are able to form binding agreements with
others – that is, agents can form coalitions, which may de-
viate from an outcome if it is mutually beneficial to do so.
Here, we consider the well-known α-core, which was intro-
duced in [Aumann, 1961], and remains a foundational solu-
tion concept in cooperative game theory. This solution con-
cept assumes that any non-deviating players may respond to
a coalitional deviation by trying to ‘block’ it, i.e., prevent the
deviators from universally improving their utility.

Under this assumption, a strategy profile σ⃗ is said to be
core-stable in G if for all coalitions C ⊆ N such that
ρ(σ⃗,G) |=

∧
i∈C ¬γi and partial strategy profiles σ⃗′

C =
(σ′

i)i∈C , there exists a response by the remaining players
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σ⃗′
−C = (σ′

i)i∈N\C such that for some player i ∈ C, it
holds that ρ((σ⃗′

C , σ⃗
′
−C),G) ̸|= γi. We let CORE(G) de-

note the set of core-stable strategy profiles in G and define
COREφ(G) = {σ⃗ ∈ CORE(G) : ρ(σ⃗,G) |= φ}. In the same
manner, as with the Nash equilibrium solution concept, we
can now define the cooperative rational verification problems
as follows:

Given: Game G, LTL goal φ.
E-CORE: Is it the case that COREφ(G) ̸= ∅?
A-CORE: Does it hold COREφ(G) = CORE(G)?

Example 2. To illustrate the difference between NE and the
core, let us revisit Example 1. Consider a strategy profile
where both robots remain at location M forever. This strat-
egy profile is a NE (albeit a suboptimal one), as there is no
unilateral deviation by Bi that satisfies γBi

: any change in
Bi’s strategy would result in the game transitioning to state t.
However, this strategy profile is not in the core, as the (grand)
coalition {B1, B2} has a strategy profile that ensures the sat-
isfaction of γB1

∧ γB2
. In fact, all strategy profiles in the

core satisfy γB1 ∧ γB2 . As a result, an A-NASH query with
φ = γB1 ∧ γB2 would return a negative answer, while an
A-CORE query would return a positive one.

Because no results exist for cooperative rational verifica-
tion in the context of regular RMGs, we solve these prob-
lems by reductions to and from concurrent game structures,
for which these problems have been studied [Gutierrez et al.,
2023a]. Thus, we establish here the first results for coopera-
tive rational verification in the RMGs model as well as in our
extension to settings with bounded resources.
Proposition 2. E-CORE and A-CORE for ERMGs and regu-
lar RMGs are 2EXPTIME-c.

5 Endogenous ERMGs
We now turn to the primary focus of our study, which is to
understand how energy offers can be strategically utilised by
agents to achieve better outcomes in a stable manner. To this
end, we first present a framework for modelling negotiations
by introducing a pre-play offer phase, in which the agents
can offer resource transfers to other agents before the game
begins. Crucially, we maintain that such offers should be sta-
ble with respect to deviations by (coalitions of) players in the
same way that strategies in the ensuing ERMGs are.

Formally, an offer by agent i is a function

ωi : N \ {i} → {0, . . . , E0
i }, such that:

1. totoffi :−
∑

j ̸=i ωi(j) ≤ E0
i ; and

2. for each agent j ∈ N \{i}, we have ωi(j)+E
0
j ≤ emax

j .

The first condition states that the total amount of energy an
agent offers to other agents does not exceed their initial en-
dowment, and the second condition states that offers must
be made within the capacity constraints of their recipients.
An offer thus specifies how much energy agent i proposes to
transfer to each other agent in the game in the pre-play nego-
tiation phase. Denote by Ωi the set of all valid initial offers
for an agent i ∈ N . Then, an offer profile ω⃗ = (ω1, . . . , ωn)
is simply a tuple of offers for each agent i ∈ N , and we write

Ω =
∏

i∈N Ωi for the set of all offer profiles. We write ω⃗0 for
the empty offer profile in which no players offer any energy
to any other player.

Given this, an Endogenous Energy Reactive Modules
Game (EERMG) proceeds in the following manner:

Stage 1: Each agent i ∈ N chooses a valid offer ωi, giving
rise to an offer profile ω⃗.

Stage 2: Each agent chooses a strategy σi in the ERMG
Gω⃗ = (A′, γ1, . . . , γn), where A′ is exactly the same
as A, except that for each i ∈ N , we update i’s initial
energy asE0′

i = min(E0
i −totoffi+

∑
j ̸=i ωj(i), e

max
i ),

for each agent i to reflect the resource transfer offers
made in ω⃗. The game Gω⃗ is then played according to
the strategy profile σ⃗ = (σi)i∈N .

Given this two-stage game, the notion of a stable outcome
can be ambiguous. This is because agents make two types of
decisions, the former affecting the latter. Here, we will as-
sume that when agents reason about offer profiles, they con-
sider the stable outcomes induced by such offers. We use
the classical Nash equilibrium and core stability notions for
each stage separately. This means that we require both the
energy offers to be stable against the appropriate kind of de-
viations and the strategy profile in the resulting stage 2 game
to be stable to deviations. Given that we consider both uni-
lateral and coalitional deviations, this approach allows us to
combine the different solution concepts in different ways for
each stage. Specifically, this gives rise to four possible combi-
nations: Nash-Nash, Nash-Core, Core-Nash, and Core-Core.
This decoupling between stability concepts for the first and
second stages of the game allows one greater flexibility in
finding a suitable model for the situation that they are trying
to capture, because agents may have differing capabilities for
communicating with one another and coordinating their be-
haviours in different stages of a game.

5.1 Stable Offers
To define a notion of stability over offer profiles, we require
a way for the agents to rank such offers in terms of prefer-
ability. However, this is difficult to specify precisely, because
different offer profiles can induce different sets of stable strat-
egy profiles in stage 2 of the game. Since we do not make
assumptions about how the agents resolve the equilibrium se-
lection problem, we propose a minimal preference relation
≻S

i for each agent i ∈ N over offer profiles that we should
expect such agents to have. This relation is defined based
on whether (i) A stable stage 2 outcome exists, (ii) A sta-
ble stage 2 outcome exists which satisfies i’s goal, and (iii)
All (and at least one) stable stage 2 outcomes satisfy i’s goal.
More concretely, for an agent i ∈ N and a stability concept
S ∈ {NASH,CORE}, let ∅Si :− {ω⃗ ∈ Ω | Sγi

(Gω⃗) = ∅},
∃Si :− {ω⃗ ∈ Ω | S(Gω⃗) ̸= Sγi

(Gω⃗) ̸= ∅}, and ∀Si :− {ω⃗ ∈
Ω | S(Gω⃗) = Sγi(G

ω⃗) ̸= ∅}.
Given any offer profiles ω⃗1 ∈ ∅Si , ω⃗2 ∈ ∃Si , and ω⃗3 ∈ ∀Si ,

we define ≻S
i such that ω⃗3 ≻S

i ω⃗2 ≻S
i ω⃗1. Moreover, for

any two offer profiles ω⃗, ω⃗′ in the same set (∅Si , ∃Si , or ∀Si ),
we assume that i is indifferent between the two offer profiles,
i.e., ω⃗ ∼S

i ω⃗′. This preference relation captures the intuition
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that an agent should (i) prefer an offer profile in which it is
possible for their goal to be achieved in some stable outcome
over one in which it is not possible to do so, and (ii) prefer an
offer profile in which their goal is guaranteed to be achieved
in any stable outcome over one in which it is merely possible.

With this, we can define Nash equilibrium in the usual way.
An offer profile ω⃗ is Nash-S-stable for the stage 1 negoti-
ation phase if for all agents i ∈ N and all alternative of-
fers ω′

i ∈ Ωi, it holds that ω⃗ ⪰S
i (ω⃗−i, ω

′
i). For the case of

core stability, the definition is not as immediate. The reason
for this is that once a coalition C ⊆ N deviates by mak-
ing alternative offers, we assume that the remaining players
N \ C have the opportunity to respond and block the devia-
tion from being profitable for all of the deviating players. In
the context of offer profiles, however, a deviation can change
the set of offers the remaining players can respond with. In
this study, we will assume that a response takes into account
the new offers made by the deviating players. However, we
will also assume that for both the deviating and responding
players, the option of withdrawing all previously made of-
fers and re-allocating the withdrawn offers is always avail-
able. Given this, we will say that an offer profile ω⃗ is Core-S-
stable for stage 1 if for all coalitions C ⊆ N and alternative
partial offer profiles ω⃗′

A = (ω′
i)i∈A, there is some response

ω⃗′
−A = (ω′

i)i∈N\A such that for some i ∈ N , it holds that
ω⃗ ⪰S

i (ω⃗′
A, ω⃗

′
−A).

Example 3. Consider the following modification of Exam-
ple 1. Let E0

B1
= E0

B2
= 0 and for i ∈ {1, 2}, γBi =

Fsi ∧
∧2

j=0 G(sj → X¬sj), i.e., both B1 and B2 also
do not want to stay in the same location twice in a row.
We then introduce two additional robots B3 and B4 with
E0

B3
= emax

B3
= 2, E0

B4
= emax

B4
= 1. Unlike the other

robots, these additional robots are immobile and can only
transfer their energy to others. Suppose that their goals are
defined as γB3

= Xs1, γB4
= Xs2 ∨ Xt. Consider the offer

profile in which B3 offers B1 and B2 1 unit each, and B4 of-
fers B2 1 unit of energy. This profile is CORE-CORE-stable,
as any possible offer deviation by B3 does not result in γB3

being satisfied in all strategy profiles in the core of the sec-
ond stage game (e.g., if B3 withdraws the offer to B2, B4 can
counter by also withdrawing its offer). On the other hand,
in this scenario, there is no NASH-CORE-stable offer profile,
since any valid offer profile will eventually enter a cycle of
deviations.

Example 3 illustrates that stable offer profiles may not ex-
ist in EERMGs. This example suggests that some games are
inherently unstable during the first stage. Therefore, the sta-
bility of the negotiation phase becomes a critical issue to ad-
dress. In the following sections, we examine some decision
problems related to this and provide several algorithms for
solving them. We demonstrate that solving such problems is
no harder than standard rational verification.

5.2 Decision Problems
Now, we turn to the central question in this study, which is
to determine whether a stable offer profile exists in a given
EERMG. To this end, we introduce the following decision
problems:

Given: Game G, agent i ∈ N , offer profiles ω⃗1, ω⃗2,
solution concept S for stage 2.
S-OFFER-PREFERENCE: Is it true that ω⃗1 ⪰S

i ω⃗2?

Given: Game G, solution concept S1 for stage 1,
solution concept S2 for stage 2.
S1-S2-OFFER-EXISTENCE: Does there exist an
S1-S2-stable offer profile ω⃗ in G?

It is worth noting that, in general, an EERMG is not guar-
anteed to have a NASH-S- or CORE-S-stable offer profile,
since the preference relations ≻S

i implicitly group offer pro-
files into more than two categories, thus allowing “deviation
cycles” to exist.

Turning to S-OFFER-PREFERENCE, for the upper-bound,
we employ an algorithm that simply runs a stable profile
check over the give offer profiles. For the lower bound, we
reduce the problem of deciding whether an S-stable strategy
profile exists in a regular RMG, hereafter called the S-NON-
EMPTINESS problem.

Theorem 3. For S ∈ {NASH,CORE}, S-OFFER-
PREFERENCE is 2EXPTIME-c.

Using this result, we can settle the complexity of the re-
maining problems. We show that they are also 2EXPTIME-c,
and hence, reasoning about the existence of stable offers with
desirable properties is no harder than the underlying ratio-
nal verification problems. The upper bound for the NASH-
S-OFFER EXISTENCE problem is established by checking,
for every agent, whether there is no beneficial deviation from
the given strategy profile, which can be done by employing
a suitable variant of LTL synthesis. The lower bound again
uses a reduction from the S-NON-EMPTINESS problem.

Theorem 4. For S ∈ {NASH,CORE}, NASH-S-OFFER-
EXISTENCE is 2EXPTIME-c.

Finally, we turn to the cooperative setting and study the
existence of core-stable offer profiles. Here, we establish the
upper bound with a reasoning similar to the one for Nash-
S-Offer-Existence, and reduce from S-NON-EMPTINESS to
obtain the lower bound.3

Theorem 5. For S ∈ {NASH,CORE}, CORE-S-OFFER-
EXISTENCE is 2EXPTIME-c.

6 Related Work

Endogenous games and side-payments: Jackson and
Wilkie discuss the stability of transfers in their seminal work
on endogenous games [Jackson and Wilkie, 2005]. In their
work, transfers are dependent on the outcome of the result-
ing game and thus allow agents to make conditional offers to
each other. In the context of infinite games, however, energy
values may constrain the set of strategies that are available to
players in an ERMG, so transfers should be made before the
game begins to be of use to the agents. This motivates the

3Note that although we reduce from the same decision problem
in these three cases, the constructions required in each case are very
distinct, due to the differences in the considered solution concepts
as well as the fact that the S1-S2-OFFER-EXISTENCE problems re-
quire one to consider the set of all possible offer profiles.
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consideration of unconditional energy transfers in the setting
we study. One could also extend our model to settings involv-
ing dynamic energy transfers, where each agent can transfer
energy to other agents at every round of the game. We leave
this as an open problem for future investigation.

Much work has been done on exploring pre-play nego-
tiations and side payments in the context of strategic form
games [Clercq et al., 2016; Goranko and Turrini, 2016;
Goranko, 2022; Renou, 2009; Turrini, 2016]. Of these, our
work aligns most closely with the study conducted by Tur-
rini (2016) [Turrini, 2016]. These studies consider one-shot
strategic-form or Boolean games as their focus. In contrast,
RMGs are played for an infinite number of rounds, which
allows agents’ goals to be modelled using expressive logics
like LTL. Furthermore, unlike the mentioned approaches, en-
ergy transfers in our model do not directly influence the util-
ity functions of the recipient players. Instead, these transfers
serve only to improve an agent’s capability to achieve their
goal. Thus, our study offers a different perspective and a com-
plementary framework for examining resource transfers that
primarily aid in goal achievement without being intrinsically
valued or optimised by the agents.

Resource-bounded games and logics: Resource-bounded
games have attracted considerable attention and have been
explored in various contexts. Energy games [Chakrabarti
et al., 2003; Bouyer et al., 2008] and their subsequent ex-
tensions are typically played in a two-player, turn-based,
zero-sum setting. In energy parity games [Chatterjee and
Doyen, 2012], the objective of Player 1 is to satisfy a qual-
itative parity condition while maintaining a positive energy
level. This aligns closely with our model here, as LTL for-
mulae can always be translated into parity conditions [Piter-
man, 2007]. However, the game graphs in [Chatterjee and
Doyen, 2012] are singly-weighted, preventing a direct re-
duction of our games to theirs. Energy games with reacha-
bility [Hélouët et al., 2022] and ω-regular objectives [Am-
ram et al., 2021] are also studied in the literature, but again
focus only on two-player games. Energy games played on
multi-weighted graphs are considered in [Velner et al., 2015;
Kupferman and Halevy, 2022], but these settings only con-
sider a quantitative condition, i.e., the players’ energy levels.
The work [Maubert et al., 2019] is also relevant, studying the
existence of winning strategies for a team of agents to achieve
some LTL formula in one form of concurrent game structures.
This is very similar to the notion of a beneficial deviation in
the cooperative setting we consider, but we focus on the exis-
tence of strategy profiles which are stable against deviations.

Many logics have been developed for reasoning about
resource-bounded games (see [Alechina and Logan, 2020]
for an extensive overview of such logics). For instance,
pe-ATL [Della Monica and Murano, 2018] is an extension
of the logic ATL, which can be used to reason about en-
ergy parity games involving multiple agents. Alechina et
al. introduced RB-ATL [Alechina et al., 2010; Nguyen et
al., 2018], another extension which assumed that resources
could only be consumed and not replenished. This was
then expanded by RB ± ATL(*) [Alechina et al., 2017;
Alechina et al., 2018], allowing for both resource consump-

tion and production. Pertaining to our work, note that while
(RB ± )ATL* can encode statements about the core, it cannot
express statements regarding the existence of Nash equilibria.

Rational Verification: Our work builds upon the existing
literature on rational verification and synthesis [Fisman et
al., 2010; Wooldridge et al., 2016; Kupferman et al., 2016;
Almagor et al., 2018]. While many studies have used RMGs
as the model for rational verification (e.g., [Gutierrez et al.,
2017; Gutierrez et al., 2018; Najib, 2019; Steeples et al.,
2021]), few have addressed resource-boundedness. Electric
Boolean games [Harrenstein et al., 2015; Oualhadj and Tro-
quard, 2016] consider resource-bounded games like our ap-
proach. While these models study resource redistributions,
they operate under the assumption that a central authority ex-
ists that is capable of redistributing energy endowments. In
contrast, the key novel aspect of our model is that we assume
agents are independent and can choose their redistributions,
giving rise to strategic considerations regarding transfers.

7 Conclusion
We have introduced ERMGs, a model of concurrent games
with resource-constrained players using the reactive modules
framework, and settled the complexity of both the key coop-
erative and non-cooperative rational verification questions for
this model, showing that they are no harder than for regular
RMGs. This therefore expands the range of practical appli-
cations which can be succinctly modelled using the reactive
modules framework to analyse situations related to bounded
resources, with almost no additional complexity cost. We
then introduced Endogenous ERMGs, which include a pre-
play phase that allows players to make energy offers to one
another, along with a notion of preferences over offer pro-
files. This preference relation enables us to study the stabil-
ity of offers in both cooperative and non-cooperative settings.
We then settled the problem of deciding whether a stable of-
fer profile exists in a given game under all combinations of
stability concepts, which remains 2EXPTIME-c. This initial
study of the Endogenous ERMG model thus sheds light on
the strategic considerations an agent faces when their actions
in one stage of a game may affect the possible rational out-
comes in the second stage of the game.

One natural extension of our work is to study how a top-
down incentive designer [Gutierrez et al., 2019; Hyland et
al., 2023] could modify the energy levels of agents to shape
the set of resulting stable outcomes. Relatedly, one could
take an approach akin to parameterised resource-bounded
ATL [Alechina et al., 2018; Alechina et al., 2020], which
can express formulae about the minimal amount of energy
a coalition needs to achieve a particular goal, by asking
whether energy subsidies or taxes can be introduced to en-
able specific outcomes. Finally, a direct next step would be to
study whether some or all stable offer profiles induce games
with (un)desirable properties. This becomes especially perti-
nent when considering the presence of malicious agents who
might collude by exchanging energies to bring about an unde-
sirable outcome. These results on the existence of stable offer
profiles lay the groundwork for these future developments.
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and Brian Logan. Parameterised resource-bounded atl. In
AAAI’20, volume 34, pages 7040–7046, 2020.

[Almagor et al., 2018] Shaull Almagor, Orna Kupferman,
and Giuseppe Perelli. Synthesis of controllable nash equi-
libria in quantitative objective game. In Jérôme Lang, edi-
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